A TEMPERATURA QUE ALTERA AS VIBRAÇÕES E OS FLUXOS DAS ENERGIAS, DIMENSÕES E FENÔMENOS TAMBÉM ALTERA OS SPINS, MOMENTUNS, MOMENTUNS MAGNÉTICOS, E OUTROS.
CONDE COM ISTO SE TEM NOVOS NÚMEROS QUÂNTICO DE GRACELI [TEMPERATURA, VIBRAÇÕES, E FLUXOS VARIACIONAIS.]
ONDE SE FORMA UMA NOVA FÍSICA QUÂNTICA, DE CONDUTIVIDADE, ELÉTRICA, MAGNÉTICA, ELETROMAGNÉTICA, MODELO PADRÃO, SIMETRIAS, DINÂMICAS, E MECÂNICAS.
COM AÇÃO E VARIAÇÕES SOBRE A QUÍMICA, A FÍSICA, RELATIVIDADES, E OUTROS.
OU SEJA, UM SISTEMA GENERALIZADO VARIACIONAL SOBRE TODAS AS FÍSICAS, QUÍMICAS,E BIOLOGIA MOLECULAR, E SUAS RAMIFICAÇÕES.
sexta-feira, 21 de agosto de 2020
TEORIA VIBRACIONAL QUÂNTICA GRACELI.
CONFORME AUMENTA A TEMPERATURA, TAMBÉM APROXIMADAMENTE AUMENTA A DILATAÇÃO [CONFORME OS MATERIAIS DENTRO DO SISTEMA SDCTIE GRACELI] COM ISTO AUMENTA AS VIBRAÇÕES, SPINS, NÚMEROS QUÂNTICO DE GRACELI, ESTRUTURA ELETRÕNICA, E ESTADOS QUÂNTICO, COM ISTO SE TEM UM SISTEMA VARIACIONAL EM TODAS AS TEORIAS E PRINCÍPIOS, E FUNDAMENTOS ENVOLVENDO MODELO ATÕMICO, QUÍMICA QUÂNTICA, E TODA A MECÂNICA QUÂNTICA, COMO E ENTRE TANTAS TEORIAS COM A INCERTEZA, EXCLUSÃO, ÁTOMO DE BOHR E OUTROS, EQUAÇÕES DA PRIMEIRA E SEGUNDA TEORIA QUÂNTICA, COOMO TAMBÉM TODA TEORIA ENVOLVENDO A TERCEIRA TEORIA QUANTICA SDCTIE GRACELI.
OU SEJA, SE TEM UMA TEORIA E MECÂNICA QUÂNTICA VARIACIONAL CONFORME SE ENCONTRA EM ÍNDICES E TIPOS DE INTENSIDADES DE TEMPERATURA.
O MESMO ACONTECE PARA A ELETROSTÁTICA, ELETROMAGNETISMO, TEORIA DE PARTÍCULAS, GAUGE, SIMETRIAS, PARIDADES, MODELO PADRÃO TÉRMICO, E OUTROS.
VEJAMOS EM:
CONFORME AUMENTA A TEMPERATURA, TAMBÉM APROXIMADAMENTE AUMENTA A DILATAÇÃO [CONFORME OS MATERIAIS DENTRO DO SISTEMA SDCTIE GRACELI] COM ISTO AUMENTA AS VIBRAÇÕES, SPINS, NÚMEROS QUÂNTICO DE GRACELI, ESTRUTURA ELETRÕNICA, E ESTADOS QUÂNTICO, COM ISTO SE TEM UM SISTEMA VARIACIONAL EM TODAS AS TEORIAS E PRINCÍPIOS, E FUNDAMENTOS ENVOLVENDO MODELO ATÕMICO, QUÍMICA QUÂNTICA, E TODA A MECÂNICA QUÂNTICA, COMO E ENTRE TANTAS TEORIAS COM A INCERTEZA, EXCLUSÃO, ÁTOMO DE BOHR E OUTROS, EQUAÇÕES DA PRIMEIRA E SEGUNDA TEORIA QUÂNTICA, COOMO TAMBÉM TODA TEORIA ENVOLVENDO A TERCEIRA TEORIA QUANTICA SDCTIE GRACELI.
OU SEJA, SE TEM UMA TEORIA E MECÂNICA QUÂNTICA VARIACIONAL CONFORME SE ENCONTRA EM ÍNDICES E TIPOS DE INTENSIDADES DE TEMPERATURA.
O MESMO ACONTECE PARA A ELETROSTÁTICA, ELETROMAGNETISMO, TEORIA DE PARTÍCULAS, GAUGE, SIMETRIAS, PARIDADES, MODELO PADRÃO TÉRMICO, E OUTROS.
VEJAMOS EM:
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
[EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
-
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli +
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
-
-
DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
x
sistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
-
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
X
[ESTADO QUÂNTICO]
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
X
Fórmula[editar | editar código-fonte]
Quando ocorre uma variação de volume de Vi para Vf o gás realiza um trabalho W que pode ser descrito pela equação:
- X
Quando ocorre uma variação de volume de Vi para Vf o gás realiza um trabalho W que pode ser descrito pela equação:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Energia Interna[editar | editar código-fonte]
Quando um gás realiza trabalho sobre um sistema, a tendência é que sua energia interna diminua; quando um sistema realiza trabalho sobre o gás, a tendência é que a energia interna do gás aumente.
Um gás ideal ou gás perfeito pode ser compreendido como um conjunto de moléculas ou átomos que estão em movimento constante e aleatório, cujas velocidades médias estão relacionadas com a temperatura - quanto maior a temperatura do sistema, maior a velocidade média das moléculas. Um gás difere-se de um líquido pelo fato de as moléculas estarem mais afastadas, exceto no momento em que elas sofrem colisões. Outra diferença é que o movimento de suas trajetórias é muito pouco perturbado pelas forças intermoleculares.[1] O conceito de gás ideal é útil porque obedece a lei dos gases ideais, uma equação de estado simplificada, e é passível de análise pela mecânica estatística.[2] A Lei dos Gases Ideais relaciona as variáveis de estado: temperatura, pressão, volume e número de mols, o que permite determinar o valor de uma variável quando se conhece as outras três. Um gás ideal é composto de partículas puntiformes (tamanho desprezível, considerando que seus diâmetros são muito menores que as distâncias médias percorridas), e precisa estar na condição de baixa pressão (falta de interações). Considerando os três estados físicos da matéria, apenas o estado gasoso permite, comparativamente, uma descrição quantitativa simples.[3]
Em condições ambientais normais tais como as temperatura e pressão padrão, a maioria dos gases reais comportam-se como um gás ideal.[2] Geralmente, desvios de um gás ideal tendem a diminuir com mais alta temperatura e menor densidade, como o trabalho realizado por forças intermoleculares tornando-se menos significativas comparadas com a energia cinética das partículas, e o tamanho das moléculas torna-se menos significativo comparado ao espaço vazio entre elas.[2]
O modelo do gás ideal tende a falhar em mais baixas temperaturas ou mais altas pressões, quando forças intermoleculares e o tamanho molecular tornam-se importantes. Em algum ponto de baixa temperatura e alta pressão, gases reais atravessam uma transição de fase, tais como um líquido ou um sólido. O modelo de um gás ideal, entretanto, não descreve ou permite transições de fases. Estes devem ser modelados por equações de estado mais complexas.
O modelo do gás ideal tem sido explorado tanto na dinâmica Newtoniana (como na "teoria cinética") e em mecânica quântica (como um "gás em uma caixa"). O modelo de gás ideal tem sido também usado para modelar o comportamento de elétrons em um metal (no modelo de Drude e no modelo do elétron livre), e é um dos mais importantes modelos em mecânica estatística.
Quando um gás realiza trabalho sobre um sistema, a tendência é que sua energia interna diminua; quando um sistema realiza trabalho sobre o gás, a tendência é que a energia interna do gás aumente.
Um gás ideal ou gás perfeito pode ser compreendido como um conjunto de moléculas ou átomos que estão em movimento constante e aleatório, cujas velocidades médias estão relacionadas com a temperatura - quanto maior a temperatura do sistema, maior a velocidade média das moléculas. Um gás difere-se de um líquido pelo fato de as moléculas estarem mais afastadas, exceto no momento em que elas sofrem colisões. Outra diferença é que o movimento de suas trajetórias é muito pouco perturbado pelas forças intermoleculares.[1] O conceito de gás ideal é útil porque obedece a lei dos gases ideais, uma equação de estado simplificada, e é passível de análise pela mecânica estatística.[2] A Lei dos Gases Ideais relaciona as variáveis de estado: temperatura, pressão, volume e número de mols, o que permite determinar o valor de uma variável quando se conhece as outras três. Um gás ideal é composto de partículas puntiformes (tamanho desprezível, considerando que seus diâmetros são muito menores que as distâncias médias percorridas), e precisa estar na condição de baixa pressão (falta de interações). Considerando os três estados físicos da matéria, apenas o estado gasoso permite, comparativamente, uma descrição quantitativa simples.[3]
Em condições ambientais normais tais como as temperatura e pressão padrão, a maioria dos gases reais comportam-se como um gás ideal.[2] Geralmente, desvios de um gás ideal tendem a diminuir com mais alta temperatura e menor densidade, como o trabalho realizado por forças intermoleculares tornando-se menos significativas comparadas com a energia cinética das partículas, e o tamanho das moléculas torna-se menos significativo comparado ao espaço vazio entre elas.[2]
O modelo do gás ideal tende a falhar em mais baixas temperaturas ou mais altas pressões, quando forças intermoleculares e o tamanho molecular tornam-se importantes. Em algum ponto de baixa temperatura e alta pressão, gases reais atravessam uma transição de fase, tais como um líquido ou um sólido. O modelo de um gás ideal, entretanto, não descreve ou permite transições de fases. Estes devem ser modelados por equações de estado mais complexas.
O modelo do gás ideal tem sido explorado tanto na dinâmica Newtoniana (como na "teoria cinética") e em mecânica quântica (como um "gás em uma caixa"). O modelo de gás ideal tem sido também usado para modelar o comportamento de elétrons em um metal (no modelo de Drude e no modelo do elétron livre), e é um dos mais importantes modelos em mecânica estatística.
Tipos de gases ideais[editar | editar código-fonte]
Existem três classes básicas de gases ideais:
- o clássico ou gás ideal de Maxwell-Boltzmann;
- o gás de Bose quântico ideal, composto de bósons; e
- o gás de Fermi quântico ideal, composto de férmions.
O gás ideal clássico pode ser separado em dois tipos: O gás ideal termodinâmico clássico e o gás ideal quântico de Boltzmann. Ambos são essencialmente o mesmo, exceto que o gás ideal termodinâmico é baseado na mecânica estatística clássica , e certos parâmetros tais como a entropia são somente especificados dentro de uma constante aditiva indeterminada. O gás ideal quântico de Boltzmann supera esta limitação, tomando o limite do gás quântico de Bose e o gás quântico de Fermi no limite de alta temperatura para especificar estas constantes aditivas. O comportamento de um gás quântico de Boltzmann é o mesmo que de um gás ideal clássico, exceto para a especificação destas constantes. Os resultados do gás quântico de Boltzmann são utilizados num certo número de casos, incluindo a equação de Sackur-Tetrode para a entropia de um gás ideal e a equação de ionização Saha para um plasma fracamente ionizado.
Existem três classes básicas de gases ideais:
- o clássico ou gás ideal de Maxwell-Boltzmann;
- o gás de Bose quântico ideal, composto de bósons; e
- o gás de Fermi quântico ideal, composto de férmions.
O gás ideal clássico pode ser separado em dois tipos: O gás ideal termodinâmico clássico e o gás ideal quântico de Boltzmann. Ambos são essencialmente o mesmo, exceto que o gás ideal termodinâmico é baseado na mecânica estatística clássica , e certos parâmetros tais como a entropia são somente especificados dentro de uma constante aditiva indeterminada. O gás ideal quântico de Boltzmann supera esta limitação, tomando o limite do gás quântico de Bose e o gás quântico de Fermi no limite de alta temperatura para especificar estas constantes aditivas. O comportamento de um gás quântico de Boltzmann é o mesmo que de um gás ideal clássico, exceto para a especificação destas constantes. Os resultados do gás quântico de Boltzmann são utilizados num certo número de casos, incluindo a equação de Sackur-Tetrode para a entropia de um gás ideal e a equação de ionização Saha para um plasma fracamente ionizado.
Gás ideal simples[editar | editar código-fonte]
Um gás ideal simples pode ser completamente caracterizado apenas pelos seguinte parâmetros macroscópicos: energia interna, volume e número de moles de seus constituintes.
Um gás ideal simples é caracterizado por duas equações:
-
- X
Um gás ideal simples pode ser completamente caracterizado apenas pelos seguinte parâmetros macroscópicos: energia interna, volume e número de moles de seus constituintes.
Um gás ideal simples é caracterizado por duas equações:
-
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
-
-
- X
-
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
-
Onde:
- é uma constante;
- é a constante universal dos gases ();
- é a energia interna do sistema;
- é o número de moles dos componestes químicos;
- é a temperatura do sistema.
Gases compostos de átomos monoatômicos não interagentes (tais como He, Ar, Ne) satisfazem essas equações em temperaturas tais que seja pequeno quando comparado com as energias de excitação eletrônica e em pressões baixas ou moderadas. Para tais gases ideais monoatômicos .
Onde:
- é uma constante;
- é a constante universal dos gases ();
- é a energia interna do sistema;
- é o número de moles dos componestes químicos;
- é a temperatura do sistema.
Gases compostos de átomos monoatômicos não interagentes (tais como He, Ar, Ne) satisfazem essas equações em temperaturas tais que seja pequeno quando comparado com as energias de excitação eletrônica e em pressões baixas ou moderadas. Para tais gases ideais monoatômicos .
Leis que regem os gases ideais termodinâmicos clássicos[editar | editar código-fonte]
Um gás ideal termodinâmico clássico obedece às seguintes leis:
Lei Pub. Condições Enunciado
Lei de Boyle-Mariotte 1662
Lei de Charles 1802
Lei de Gay-Lussac 1809
Lei de Avogadro 1811 Substância pura
X
Um gás ideal termodinâmico clássico obedece às seguintes leis:
Lei | Pub. | Condições | Enunciado |
---|---|---|---|
Lei de Boyle-Mariotte | 1662 | ||
Lei de Charles | 1802 | ||
Lei de Gay-Lussac | 1809 | ||
Lei de Avogadro | 1811 | Substância pura |
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde:
- representa a pressão;
- representa o volume;
- representa a temperatura termodinâmica;
- representa a quantidade de gás;
- representa a massa.
Onde:
- representa a pressão;
- representa o volume;
- representa a temperatura termodinâmica;
- representa a quantidade de gás;
- representa a massa.
Equação de Clapeyron[editar | editar código-fonte]
Unificando todos os enunciados obtemos que:
- X
Unificando todos os enunciados obtemos que:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Essa relação define a constante dos gases perfeitos () que vale 8,314 J·K−1mol−1 para todos os gases perfeitos. Daí vem a equação de estado dos gases perfeitos, conhecida como equação de Clapeyron:
- X
Essa relação define a constante dos gases perfeitos () que vale 8,314 J·K−1mol−1 para todos os gases perfeitos. Daí vem a equação de estado dos gases perfeitos, conhecida como equação de Clapeyron:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O nome dessa formulação é uma referência a Benoît Paul-Émile Clapeyron.
O nome dessa formulação é uma referência a Benoît Paul-Émile Clapeyron.
Relação com a realidade[editar | editar código-fonte]
Ver artigo principal: Gás real
Um gás real tende a se comportar como ideal quando o fator de compressibilidade () tende a um, ou seja, quando a pressão é baixa e a temperatura é alta, para que a distância entre as moléculas seja a maior possível. Nessas condições, os choques entre as moléculas se tornam praticamente elásticos, havendo pouca perda de energia cinética.
- X

Um gás real tende a se comportar como ideal quando o fator de compressibilidade () tende a um, ou seja, quando a pressão é baixa e a temperatura é alta, para que a distância entre as moléculas seja a maior possível. Nessas condições, os choques entre as moléculas se tornam praticamente elásticos, havendo pouca perda de energia cinética.
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Podemos perceber que a equação não faz nenhuma referência ao tipo de molécula de gás. A consequência desse fato é a que a equação é incapaz de prever os efeitos das interações intermoleculares. Porque se duas moléculas com grande interação intermolecular se cruzam próximas uma da outra existe uma força de atração, diminuindo a energia cinética, o que diminuiria a pressão total do sistema em relação ao esperado no caso de não haver tal interação. Por isso é preciso que o sistema esteja em alta temperatura e baixa pressão.
No primeiro caso, com a temperatura alta, a alta energia cinética faz com que os choques entre as moléculas sejam quase elásticos, e quando elas se aproximam a interação seja por um momento curto e a interação acaba não sendo o suficiente para mudar a trajetória das partículas no gás. É como se fosse um foguete passando próximo da superfície de um planeta. Se a velocidade for baixa ele será aprisionado pelo enorme campo gravitacional, mudando de trajetória e se chocando com o planeta, o que diminuiria sua energia cinética. Se a velocidade for suficientemente alta ele passará sem grandes mudanças.
No segundo caso, com a baixa pressão, as moléculas estão muito afastadas. E como a interação depende fortemente da distância das partículas, grandes distâncias fazem com que o efeito de interação seja praticamente desprezível.
Um bilhar dinâmico é um sistema dinâmico no qual uma partícula alterna entre movimentos rectilínios e reflexões especulares num contorno ou fronteira.[1] Quando a partícula impacta contra o contorno se reflexa na perdida de sua velocidade. Os sistemas de bilhares dinâmicos são idealizações dos jogos de bilhar, mas onde a região contida pelo contorno pode ter formas distintas da retangular e ainda que possua numerosas dimensões.
Os bilhares dinâmicos podem também ser estudados em geometria não euclidiana; no efeito os primeiros estudos dos bilhares estabeleceram seu movimento ergódico sobre as superfícies de curvatura negativa constante. O estudo dos bilhares que se unem por fora de uma região, no lugar de estar contidos dentro de uma região, é conhecido como a teoria de bilhares exteriores. O movimento da partícula no bilhar é uma linha reta, com energia constante, entre reflexições na fronteira (uma geodésica para toda curvatura da superfície).
Todas as reflexições são especulares: o ângulo de incidencia justo antes do impacto é igual ao ângulo de reflexão justo depois do choque. A sucessão de reflexições se denomina o mapa do bilhar e caracreriza completamente o movimento da partícula. Os bilhares capturam toda a complexidade dos sistemas hamiltonianos, desde integrabilidade ao movimento caótico, sem as dificuldades de integrar as equações de movimento para determinar seu mapa de Poincaré.
Birkhoff demonstrou que um sistema de bilhar com uma superfície elíptica é integrável. Os bilhares unidimensionais (ou seja "hard rods") possuem um caos determinístico e são ergódicos se tem diferentes massas. Os problemas matemáticos dos bilhares unidimensionais com distintas massas e o de um único bilhar com uma caixa de contorno plano são equivalentes. A propriedade caótica significa que os bilhares são mostradores extremadamente eficientes de seu espaço de fase.
O hamiltoniano de uma partícula de massa "m" que se descoloca em forma livre sem fricção sobre uma superfície é:
- X
Podemos perceber que a equação não faz nenhuma referência ao tipo de molécula de gás. A consequência desse fato é a que a equação é incapaz de prever os efeitos das interações intermoleculares. Porque se duas moléculas com grande interação intermolecular se cruzam próximas uma da outra existe uma força de atração, diminuindo a energia cinética, o que diminuiria a pressão total do sistema em relação ao esperado no caso de não haver tal interação. Por isso é preciso que o sistema esteja em alta temperatura e baixa pressão.
No primeiro caso, com a temperatura alta, a alta energia cinética faz com que os choques entre as moléculas sejam quase elásticos, e quando elas se aproximam a interação seja por um momento curto e a interação acaba não sendo o suficiente para mudar a trajetória das partículas no gás. É como se fosse um foguete passando próximo da superfície de um planeta. Se a velocidade for baixa ele será aprisionado pelo enorme campo gravitacional, mudando de trajetória e se chocando com o planeta, o que diminuiria sua energia cinética. Se a velocidade for suficientemente alta ele passará sem grandes mudanças.
No segundo caso, com a baixa pressão, as moléculas estão muito afastadas. E como a interação depende fortemente da distância das partículas, grandes distâncias fazem com que o efeito de interação seja praticamente desprezível.
Um bilhar dinâmico é um sistema dinâmico no qual uma partícula alterna entre movimentos rectilínios e reflexões especulares num contorno ou fronteira.[1] Quando a partícula impacta contra o contorno se reflexa na perdida de sua velocidade. Os sistemas de bilhares dinâmicos são idealizações dos jogos de bilhar, mas onde a região contida pelo contorno pode ter formas distintas da retangular e ainda que possua numerosas dimensões.
Os bilhares dinâmicos podem também ser estudados em geometria não euclidiana; no efeito os primeiros estudos dos bilhares estabeleceram seu movimento ergódico sobre as superfícies de curvatura negativa constante. O estudo dos bilhares que se unem por fora de uma região, no lugar de estar contidos dentro de uma região, é conhecido como a teoria de bilhares exteriores. O movimento da partícula no bilhar é uma linha reta, com energia constante, entre reflexições na fronteira (uma geodésica para toda curvatura da superfície).
Todas as reflexições são especulares: o ângulo de incidencia justo antes do impacto é igual ao ângulo de reflexão justo depois do choque. A sucessão de reflexições se denomina o mapa do bilhar e caracreriza completamente o movimento da partícula. Os bilhares capturam toda a complexidade dos sistemas hamiltonianos, desde integrabilidade ao movimento caótico, sem as dificuldades de integrar as equações de movimento para determinar seu mapa de Poincaré.
Birkhoff demonstrou que um sistema de bilhar com uma superfície elíptica é integrável. Os bilhares unidimensionais (ou seja "hard rods") possuem um caos determinístico e são ergódicos se tem diferentes massas. Os problemas matemáticos dos bilhares unidimensionais com distintas massas e o de um único bilhar com uma caixa de contorno plano são equivalentes. A propriedade caótica significa que os bilhares são mostradores extremadamente eficientes de seu espaço de fase.
O hamiltoniano de uma partícula de massa "m" que se descoloca em forma livre sem fricção sobre uma superfície é:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Este tipo de potencial garante uma reflexão especular na borda. O término cinético garante que a partícula se mova em linha reta, sem nenhuma troca em sua energia. Se a partícula se desloca em uma variedade(superfície), então o hamiltoniano é representado por:
- X
Este tipo de potencial garante uma reflexão especular na borda. O término cinético garante que a partícula se mova em linha reta, sem nenhuma troca em sua energia. Se a partícula se desloca em uma variedade(superfície), então o hamiltoniano é representado por:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é o tensor métrico em um ponto . Devido a estrutura muito simples deste hamiltoniano, as equações de movimento da partícula, as Equações de Hamilton-Jacobi, não são mais que as equações geodésicas na variedade: a partícula se desloca ao largo de geodésicas.
A equação de Van der Waals é uma equação de estado de um fluido composto de partículas com um tamanho não desprezável e com forças intermoleculares, como as forças de Van der Waals. A equação, cuja origem remonta a 1873, deve seu nome à Johannes Diderik van der Waals, que recebeu o Prêmio Nobel de Física em 1910 por seu trabalho na equação de estado dos gases e líquidos. Essa equação está baseada na modificação da lei dos gases ideais para que se aproxime da maneira mais precisa do comportamento dos gases reais, tendo em conta seu tamanho diferente de zero e a atração entre suas partículas.
onde é o tensor métrico em um ponto . Devido a estrutura muito simples deste hamiltoniano, as equações de movimento da partícula, as Equações de Hamilton-Jacobi, não são mais que as equações geodésicas na variedade: a partícula se desloca ao largo de geodésicas.
A equação de Van der Waals é uma equação de estado de um fluido composto de partículas com um tamanho não desprezável e com forças intermoleculares, como as forças de Van der Waals. A equação, cuja origem remonta a 1873, deve seu nome à Johannes Diderik van der Waals, que recebeu o Prêmio Nobel de Física em 1910 por seu trabalho na equação de estado dos gases e líquidos. Essa equação está baseada na modificação da lei dos gases ideais para que se aproxime da maneira mais precisa do comportamento dos gases reais, tendo em conta seu tamanho diferente de zero e a atração entre suas partículas.
A energia das moléculas[editar | editar código-fonte]
funciona perfeitamente com pressões abaixo de 1 atm e temperaturas muito acima das temperaturas de condensação de um gás (esse é o conceito de gás ideal), uma vez que a pressão baixa (menos partículas por m³) reduz a probabilidade de colisões entre as moléculas e a alta temperatura aumenta a velocidade das moléculas, ou seja, diminui as interações intermoleculares, de modo que uma molécula com alta velocidade e, consequentemente, elevada energia cinética, passe do lado de uma outra molécula sem sofrer desvios consideráveis ou atrações maiores.
Se a molécula apresentasse baixa velocidade, ela seria atraída pela outra molécula e o gás , dependendo das pressões e da energia das moléculas, poderia liquefazer-se. Tal qual um foguete que ao passar perto de um planeta, com baixa velocidade, é atraído pelo campo gravitacional do mesmo, sofrendo um desvio em sua órbita.
Se a molécula for bem rápida, ela consegue escapar da força de atração das outra moléculas proporcionalmente à quantidade de energia que ela detém.
funciona perfeitamente com pressões abaixo de 1 atm e temperaturas muito acima das temperaturas de condensação de um gás (esse é o conceito de gás ideal), uma vez que a pressão baixa (menos partículas por m³) reduz a probabilidade de colisões entre as moléculas e a alta temperatura aumenta a velocidade das moléculas, ou seja, diminui as interações intermoleculares, de modo que uma molécula com alta velocidade e, consequentemente, elevada energia cinética, passe do lado de uma outra molécula sem sofrer desvios consideráveis ou atrações maiores.
Se a molécula apresentasse baixa velocidade, ela seria atraída pela outra molécula e o gás , dependendo das pressões e da energia das moléculas, poderia liquefazer-se. Tal qual um foguete que ao passar perto de um planeta, com baixa velocidade, é atraído pelo campo gravitacional do mesmo, sofrendo um desvio em sua órbita.
Se a molécula for bem rápida, ela consegue escapar da força de atração das outra moléculas proporcionalmente à quantidade de energia que ela detém.
Fator de compressibilidade[editar | editar código-fonte]
Há uma grandeza chamada fator de compressibilidade (z) que podemos expressar por: .
X
Há uma grandeza chamada fator de compressibilidade (z) que podemos expressar por: .
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Para os gases ideais, z deve ser igual a 1 sob qualquer condição de temperatura, volume e/ou pressão. Porém foi observado experimentalmente que z desvia-se consideravelmente de 1 sob pressões mais altas e temperaturas mais baixas, como é mostrado no gráfico abaixo:
Para os gases ideais, z deve ser igual a 1 sob qualquer condição de temperatura, volume e/ou pressão. Porém foi observado experimentalmente que z desvia-se consideravelmente de 1 sob pressões mais altas e temperaturas mais baixas, como é mostrado no gráfico abaixo:
A equação[editar | editar código-fonte]
Observando isto, Van der Waals formulou sua equação, em 1873, a partir de dados obtidos experimentalmente, ou seja, a equação de Van der Waals é uma equação de estado empírica, e pode ser representada por:
X
Observando isto, Van der Waals formulou sua equação, em 1873, a partir de dados obtidos experimentalmente, ou seja, a equação de Van der Waals é uma equação de estado empírica, e pode ser representada por:
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde a e b são constantes empíricas e variam para cada tipo de gás.
A constante a está relacionada com as forças de atração intermoleculares e a constante b está relacionada com o volume molecular. A tabela abaixo nos traz os valores de a e b para alguns gases:
Constantes de van der Waals
Gás a (litro2•atm/mol2) b (litro/mol)
H2 0,2444 0,02661
He 0,03412 0,02370
N2 1,390 0,03913
O2 1,360 0,03183
CO 1,485 0,03985
NO 1,340 0,02789
CO2 3,592 0,04267
H2O 5,464 0,03049
X
onde a e b são constantes empíricas e variam para cada tipo de gás.
A constante a está relacionada com as forças de atração intermoleculares e a constante b está relacionada com o volume molecular. A tabela abaixo nos traz os valores de a e b para alguns gases:
Gás | a (litro2•atm/mol2) | b (litro/mol) |
---|---|---|
H2 | 0,2444 | 0,02661 |
He | 0,03412 | 0,02370 |
N2 | 1,390 | 0,03913 |
O2 | 1,360 | 0,03183 |
CO | 1,485 | 0,03985 |
NO | 1,340 | 0,02789 |
CO2 | 3,592 | 0,04267 |
H2O | 5,464 | 0,03049 |
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Analisando mais a fundo a equação, nota-se que se o volume for suficientemente grande para a pressão ser baixa, o termo tornar-se-á muito pequeno, e a soma será praticamente igual a P. Sendo assim, ainda com V muito grande, o termo será praticamente igual a V. Portanto quando a pressão é baixa, essa equação pode ser aproximada para , ou seja, o comportamento do gás será semelhante ao de um gás ideal.
Analisando mais a fundo a equação, nota-se que se o volume for suficientemente grande para a pressão ser baixa, o termo tornar-se-á muito pequeno, e a soma será praticamente igual a P. Sendo assim, ainda com V muito grande, o termo será praticamente igual a V. Portanto quando a pressão é baixa, essa equação pode ser aproximada para , ou seja, o comportamento do gás será semelhante ao de um gás ideal.
Propriedades críticas[editar | editar código-fonte]
Para substâncias puras, a taxa de variação parcial da pressão em relação ao volume é constante no ponto crítico. Além disso, existe um ponto de inflexão na isotérmica crítica (linha de temperatura constante) no diagrama pV. Isso significa que no ponto crítico:
- X
Para substâncias puras, a taxa de variação parcial da pressão em relação ao volume é constante no ponto crítico. Além disso, existe um ponto de inflexão na isotérmica crítica (linha de temperatura constante) no diagrama pV. Isso significa que no ponto crítico:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Ou seja, a primeira e a segunda derivada parcial da pressão p em relação ao volume V são ambas zero, com a derivada parcial avaliada sobre temperatura constante T. Essa relação pode ser usada para avaliar dois parâmetros para uma equação de estado em termos das propriedades do ponto crítico.
Em alguns casos, um conjunto de propriedades reduzidas é definido em termos das propriedades críticas, i.e.:[1]
- X
Ou seja, a primeira e a segunda derivada parcial da pressão p em relação ao volume V são ambas zero, com a derivada parcial avaliada sobre temperatura constante T. Essa relação pode ser usada para avaliar dois parâmetros para uma equação de estado em termos das propriedades do ponto crítico.
Em alguns casos, um conjunto de propriedades reduzidas é definido em termos das propriedades críticas, i.e.:[1]
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- X
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- X
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a temperatura reduzida, é a pressão reduzida, é o volume reduzido, e é a constante universal dos gases.
onde é a temperatura reduzida, é a pressão reduzida, é o volume reduzido, e é a constante universal dos gases.
Nenhum comentário:
Postar um comentário